Insight Tribune

Photocrosslinking of hyaluronic acid-based hydrogels through biotissue barriers


Photocrosslinkable hydrogels based on hyaluronic acid are promising biomaterials highly demanded in tissue engineering. Typically, hydrogels are photocured under the action of UV or blue light strongly absorbed by biotissues, which limits prototyping under living organism conditions. To overcome this limitation, we propose the derivatives of well-known photosensitizers, namely chlorin p6, chlorin e6 and phthalocyanine, as those for radical polymerization in the transparency window of biotissues. Taking into account the efficiency of radical generation, dark and light cell toxicity, we evaluated the water miscible pyridine phthalocyanine as a promising initiator for the intravital hydrogel photoprinting of hyaluronic acid glycidyl methacrylate (HAGM) under irradiation near 670 nm. Coinitiators (dithiothreitol or 2-mercaptoethanol) reduce the irradiation dose required for HAGM crosslinking from ~405 J/cm2 to 80 J/cm2. Patterning by direct laser writing using a scanning 675 nm laser beam was performed to demonstrate the formation of complex shape structures. Young’s moduli typical for soft tissue (~270-460 kPa) were achieved for crosslinked hydrogels. The viability of human keratinocytes HaCaT cells within the photocrosslinking process was shown. To demonstrate scaffolding across the biotissue barrier, subcutaneously injected photocomposition was crosslinked in BALB/c mice. The safety of the irradiation dose of 660-675 nm light (100 mW/cm2, 15 min) and the non-toxicity of the hydrogel components were confirmed by histomorphologic analysis. The intravitally photocrosslinked scaffolds maintained their shape and size for at least one month, accompanied by slow biodegradation. We conclude that the proposed technology provides a lucrative opportunity for minimally invasive scaffold formation through biotissue barriers.


You have access to this article



Please wait while we load your content…


Something went wrong. Try again?
Exit mobile version